

Ricardo Teixeira da Costa Neto

Modelagem e Integração dos Mecanismos de Suspensão e Direção de Veículos Terrestres Através do Fluxo de Potência

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio.

Orientador: Prof. Mauro Speranza Neto, D.Sc.

Rio de Janeiro, abril de 2008

Ricardo Teixeira da Costa Neto

Modelagem e Integração dos Mecanismos de Suspensão e Direção de Veículos Terrestres Através do Fluxo de Potência

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Mecânica da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Mauro Speranza Neto, D.Sc. Orientador PUC-Rio

> Prof. Mauro Speranza Neto, D.Sc. PUC-Rio

> > Prof. Max Suell Dutra, Dr. Ing. COPPE/UFRJ

Prof. Francisco José da Cunha Soeiro, Ph.D. UERJ

Prof. Clodio Alberto de Pastro Sarzeto, D.Sc. IME

Prof. Benedito Luis Barbosa de Andrade, D.Sc.

Prof. Fernando Ribeiro da Silva, D.Sc. IME

José Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 30 de abril de 2008

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Ricardo Teixeira da Costa Neto

Graduou-se Engenheiro Mecânico e de Automóveis no IME em 1996. Trabalhou no Arsenal de Guerra do Rio na construção dos protótipos de reboques 3/4 ton para geradores, para uso em qualquer terreno, de janeiro de 1997 a janeiro de 1999. Pós-graduação em Engenharia Mecânica de 1999 a 2001, no IME. Desde a conclusão do Mestrado é professor no IME, onde ministrou as cadeiras específicas do Curso de Automóveis, além de acumular expriência no uso do programa CAD Solid Works.

Ficha Catalográfica

Costa Neto, Ricardo Teixeira da

Modelagem e integração dos mecanismos de suspensão e direção de veículos terrestres através do fluxo de potência / Ricardo Teixeira da Costa Neto ; orientador: Mauro Speranza Neto. – 2008.

224 f. : il.(col.) ; 30 cm

Tese (Doutorado em Engenharia Mecânica)– Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

1. Engenharia mecânica – Teses. 2. Dinâmica veicular. 3. Fluxo de potência. 4. Grafos de ligação. 5. Modelagem modular. 6. Integração de sistemas veiculares. 7. Implementação modular em Simulink/Matlab. I. Speranza Neto, Mauro. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Mecânica. III. Título.

CDD: 621

A Mônica, minha mulher, amiga e companheira "no infinito de nós dois", e Luana, um anjo que Deus me concedeu a graça e a responsabilidade de educar.

Agradecimentos

Ao meu orientador, Professor Mauro Speranza Neto, pela amizade, pela parceria e confiança, itens primordiais para a realização de um trabalho desse porte.

Ao CEL José Diniz Mesquita Abrunhosa, pela confiança, suporte administrativo e respeito pelo trabalho desenvolvido. Um dos exemplos que levo comigo.

Ao Prof. Clódio Alberto Pastro Sarzeto, pela força e amizade. Sem sua atuação esse trabalho não seria realizado.

Ao CEL Benedito Luis Barbosa de Andrade, personificação da cordialidade, da educação e melhor exemplo de como resolver problemas com calma e tranqüilidade.

Aos professores e companheiros da Seção de Engenharia Mecânica e de Materiais do Instituto Militar de Engenharia, pelo incentivo e pela ajuda.

A todos os professores do Departamento de Engenharia Mecânica da PUC-Rio, pelos ensinamentos.

Aos amigos Juliana Valério e Philipe Barcellos, pelas horas de estudo pré-exame de qualificação.

Ao meu pai, Aristóteles, pelo amor, pela sabedoria, pelo exemplo e pelo suporte decisivo nos últimos quatro meses.

Ao meu Pai, YHWH, Princípio e Fim de Todas as Coisas, aos meus Irmãos, Jesus, Arcanjo Miguel, Sai Baba, Ramana, Osho; à Egrégora do Olho de Hórus, à Egrégora do GAF.

E, sobretudo, à minha mulher, Mônica, por ter suportado junto comigo o peso de cinco anos de trabalho com muito amor, e à minha filha Luana, pelo amor incondiconal, pelo carinho e pela alegria.

Resumo

Costa Neto, Ricardo Teixeira; Speranza Neto, Mauro. **Modelagem e Integração dos Mecanismos de Suspensão e Direção de Veículos Terrestres Através do Fluxo de Potência.** Rio de Janeiro, 2008. 224p. Tese de Doutorado - Departamento de Engenharia Mecânica, Pontifícia Universidade Católica do Rio de Janeiro.

A sub-divisão de um veículo em módulos é muito útil quando se quer estudar o comportamento dinâmico de um determinado subsistema e sua influência nos demais componentes. Em alguns casos, devido ao tipo de tratamento empregado para descrever os elementos, não se consegue perceber de que modo as variáveis inerentes a um subsistema interagem com as demais, e, por conseguinte, os subsistemas entre si. A abordagem modular baseada no fluxo de potência permite uma melhor identificação das relações de causa e efeito entre subsistemas, uma vez que se pode definir, de forma clara e consistente, quem são as variáveis de entrada e de saída de cada componente ou módulo, e, conseqüentemente, seus acoplamentos. Neste tipo de tratamento, aplicado aos sistemas mecânicos, uma vez estabelecida a cinemática de um subsistema, podese obter as relações entre os esforços que seus componentes produzem uns sobre os outros, a partir da caracterização da potência transmitida através dos seus diversos elementos. Este trabalho apresenta um procedimento semi-analítico de equacionamento modular aplicado à modelagem e integração dos sistemas de suspensão e direção de veículos terrestres, no qual as variáveis de entrada e saída indicam o fluxo de potência entre os elementos de todo o sistema. Tal abordagem tem como base a técnica dos Grafos de Ligação, empregada em sistemas multidomínio em geral, e usa alguns conceitos da metodologia dos Transformadores Cinemáticos, normalmente aplicada aos sistemas multicorpos. A partir da definição da geometria dos mecanismos em questão, encontram-se as matrizes que representam os vínculos cinemáticos entre seus elementos, das quais o funcionamento dos sistemas integrados pode ser simulado e analisado, e informações necessárias aos seus projetos determinadas. As equações (malhas) algébricas que existem em mecanismos com estrutura cinemática fechada são analiticamente resolvidas, evitando deste modo modelos matemáticos com equações diferenciais e algébricas simultâneas. Das relações cinemáticas, o modelo dinâmico (matrizes de inércia, rigidez e amortecimento, etc) é obtido, e novamente informações essenciais à análise e síntese dos sistemas podem ser determinadas. O comportamento no tempo desses modelos pode ser encontrado por um método de integração de equações diferenciais gualquer. Adota-se o Simulink/MatLab® para representar o modelo assim desenvolvido em diagrama de blocos, e conseqüentemente simulá-lo. Através deste tratamento, cada bloco da implementação em Simulink/MatLab® contém o correspondente modelo analítico de um único módulo, cujo estabelecimento depende das características dinâmicas do sistema que se deseja analisar. A vantagem de adotar tal representação, baseada no fluxo de potência, consiste no fato de que um módulo pode ser substituído por outro, descritivo de um elemento ou subsistema com a mesma função, porém com configuração física distinta, e, conseqüentemente, modelo matemático específico, sem qualquer alteração nos demais componentes do sistema. Este procedimento está sendo adotado para modelagem dos diversos sistemas veiculares, como os de suspensão, direção, transmissão e freios, e também os pneus, inseridos em um chassi, incluindo os graus de liberdade desejados do veículo, todos descritos de forma modular semi-analítica através da mesma abordagem, empregando a técnica de modelagem mais apropriada para representá-los.

Palavras-chave

Dinâmica Veicular; Fluxo de Potência; Grafos de Ligação; Modelagem Modular; Integração de Sistemas Veiculares; Implementação Modular em Simulink/Matlab.

Abstract

Costa Neto, Ricardo Teixeira; Speranza Neto, Mauro. **Ground Vehicles Suspension and Steering Mechanisms Modeling and Integration through Power Flow.** Rio de Janeiro, 2008. 224p. D.Sc Thesis -Departamento de Engenharia Mecânica, Pontificia Universidade Católica do Rio de Janeiro.

The sub-division of a vehicle in modules is very useful when we want to study the dynamical behavior of a certain sub-system and its influence in other components. In some cases, due to the type of treatment employed to describe the dynamic behavior of the elements, we don't get to notice the way that inherent variables in a sub-system interacts with the others, and, consequently, the subsystems amongst themselves. The modular approach based on the power flow allows a better identification of the causal relationships among sub-systems, once it can define, in clear and consistent way, what are the input and output variables of each component or module, and, consequently, their couplings. In this type of treatment applied to the mechanical systems, once established the kinematics of a sub-system, it can be obtained the relationships among the efforts that their components produce on the other ones, from the characterization of the power transmitted through their several elements. This paper presents a semi-analytical procedure of modular modeling applied to the suspension and steering systems of a ground vehicle, in which the input and output variables indicate the power flow among the elements of the whole system. Such approach has as base the Bond Graphs technique, used in multidomain systems in general, and uses some concepts of the Kinematic Transformers methodology, usually applied to the multibody systems. From the mechanisms geometry, the matrices that represent the kinematics links between its elements are found, the operation of the integrated systems can be simulated and analyzed, and information about its design can be obtained. The algebraic loops (equations) inherent to mechanisms with closed kinematic structure are solved analytically, and there is not a mathematical model with simultaneous algebraic and differential equations. From the kinematic relations, the dynamic model (inertial, stiffness and damping matrices) is obtained, and again essential information to the systems analysis and synthesis can be determined. The models time behavior can be found by any

differential equations integration method. The *Simulink/Matlab*® is adopted to represent the model developed by block diagrams, and consequently to simulate it. Through this treatment, each block in the *Simulink/Matlab*® implementation contains the correspondent analytical model of a single module, whose establishment depends on the dynamic characteristics of the system to be analyzed. The advantage of adopting such representation, based on the power flow, consists in the fact that a module can be substituted for other, descriptive of an element or sub-system with the same function, however with different physical configuration, and, consequently, specific mathematical model, without any alteration in the other components of the system. This procedure is being adopted for modeling all vehicular systems, like the suspension, steering, transmission and brakes systems, and also the tires, inserted in the chassis, including the desired degrees of freedom of the vehicle, all described in a semi-analytical modular way by the same approach, using the most appropriate modeling technique to represent them.

Keywords

Vehicular Dynamics. Power Flow. Bond Graphs. Modular Modeling. Vehicular Sytems Integration. Simulink/Matlab Modular Implementation..

Sumário

1 Introdução	21
1.1. Objetivo	21
1.2. Posicionamento	21
1.3. Motivação	27
1.4. Relevância	28
1.5. Descrição dos Capítulos	29
2 Revisão Bibliográfica	32
2.1. Referências Principais	32
2.2. Transformadores Cinemáticos	34
2.3. Referências Usando o SIMULINK	35
2.4. Abordagem Modular	35
2.5. Modelos Planos e Lineares Simples	36
2.6. Modelos que envolvem Geometria e Multicorpos Rígidos	38
2.7. Modelos que envolvem Geometria e Multicorpos Flexíveis	40
2.8. Modelos que utilizam Abordagem Modular em Programas	
Comerciais	40
2.9. Modelos para Análise de Parâmetros, Subsistemas ou	
Componentes Isolados do Veículo	42
2.10. Modelos com Abordagem Via Grafo de Ligação	42
3 Modelagem Via Fluxo de Potência	45
3.1. Estruturas de Modelos Dinâmicos	45
3.1.1. Grafos de Ligação	46
3.1.2. Campos	52
3.1.3. Estruturas de Junção	55
3.2. Acoplamento de Modelos	60
3.2.1. Condições de Compatibildade	62
3.2.2. Acoplamento com Laços Algébricos	63

3.2.2.1. Causalidade Mista em Armazenadores	64
3.2.2.2. Causalidade Mista em Resistores	64
3.2.2.3. Mecanismos Com Cinemática Fechada	65
3.2.3. Acoplamento Via Estrutura de Junção	70
3.3. Estrutura de Modelos Veiculares	73
3.3.1. Sistema de Transmissão e Freios	74
3.3.2. Sistema de Suspensão	76
3.3.3. Sistema de Direção	78
4 Descrição do Procedimento	81
4.1. Modelo Cinemático	81
4.2. Estrutura de Junção	86
4.3. Identificação e Eliminação dos Laços Algébricos Cinemáticos	89
4.3.1. Suspensão Semi-Eixo Oscilante	90
4.3.2. Suspensão Braços Sobrepostos	103
4.4. Modelo Dinâmico	116
4.4.1. Acoplamento Analítico	116
4.4.1.1. Modelo em Equações de Movimento	117
4.4.1.2. Modelo de Estado em Variáveis Lagrangeanas	122
4.4.2. Acoplamento Computacional	125
5 Aplicação do Procedimento	127
5.1. Modelo do Chassi	127
5.2. Modelo do Pneu	132
5.3. Suspensão Semi-Eixo Oscilante	134
5.4. Suspensão Braços Sobrepostos	144
5.5. Relação Entre Estruturas de Junção de Sistemas Com Partes	
Comuns	151
5.6. Mecanismo de Direção	153
6 Implementação do Procedimento	170
6.1. Chassi e Pneu	171
6.2. Suspensão Semi-Eixo Oscilante	174
6.3. Suspensão Braços Sobrepostos	177

7 Validação dos Modelos e Simulações	181
7.1. O Modelo em Ambiente visualNatran 4D	185
7.2. Suspensão Semi-Eixo Oscilante	186
7.3. Suspensão Braços Sobrepostos	198
7.4. Simulação com Excitação de Base Atuante	206
8 Conclusões e Sugestões	211
9 Referências Bibliográficas	215
10 Bibliografia	224

Lista de figuras

Figura 1 – (a) Modularidade computacional e (b) modularidade	
analítica.	24
Figura 2 – Intercambialidade de módulos no sistema com modularidade	е
computacional.	25
Figura 3 – Mudança de módulos no sistema com mudolaridade	
analítica.	26
Figura 4 – Grafo de Ligação Simples.	50
Figura 5 – Representação esquemática de um Grafo de Ligação.	51
Figura 7 – Representação de uma junção vetorial 1 com três portas	
e ordem n.	54
Figura 8 – Estrutura de junção genérica (giradores ausentes).	55
Figura 9 – Estrutura de junção detalhada, com os campos separados	
por causalidade.	56
Figura 10 – Compatibilidade entre módulos.(a) causalidade compatível	,
(b) causalidade compatível com inversão do sinal de	
potência de um dos módulos; (c) conflito de causalidade.	62
Figura 11 – Representação de um mecanismo em cadeia fechada,	
com o corpo b ligando-se aos corpos c e d .	65
Figura 12 – Subsistema com mecanismos encadeados. (a) Forma	
aberta; (b) forma fechada.	71
Figura 13 – Obtenção de uma nova estrutura de junção para um	
subsistema a partir de duas outras encadeadas.	71
Figura 14 – Veículo representado como um diagrama de blocos.	74
Figura 15 – Sistema de Transmissão de um veículo 4×4.	75
Figura 16 – Componentes de um sistema de freios de um veículo leve.	
1) Freio da roda (disco), 2) mangueira do freio, 3) conexão	,
4) tubulação do freio (rígida), 5) cilindro mestre,	
6) reservatório do fluido de freio, 7) servofreio, 8) pedal	
do freio, 9) freio deestacionamento, 10) cabo do freio,	
11) limitador da força de frenagem, 12) freio da roda	

(tambor).	75
Figura 17 – Diagrama de fluxo de potência para os sistemas	
de transmissão e de freios.	76
Figura 18 – Dimensões principais de amortecedores COFAP®	
dianteiros usadas para dimensionamento de suspensões	
McPherson em alguns veículos de passeio.	77
Figura 19 – Deslocamento angular do semi-eixo. O ângulo mede	
aproximadamente 9°.	77
Figura 20 – Diagrama de fluxo de potência de um sistema de	
suspensão.	78
Figura 21 – Sistema de direção com caixa do tipo pinhão e cremalheir	a
com assistência hidráulica.	79
Figura 22 – Diagrama de fluxo de potência do sistema de direção.	79
Figura 23 – Vínculo Cinemático entre velocidades absolutas de entrad	la
e de saída.	87
Figura 24 – Níveis de detalhamento do sistema.	89
Figura 25 – Grafo de Ligação com Iaço algébrico, destacado na linha	
pontilhada.	90
Figura 27 – Grafo de Ligação da Coluna Telescópica.	92
Figura 28 – Grafo de Ligação do semi-eixo da suspensão.	93
Figura 30 – Grafo Multiligação do mecanismo representativo da	
suspensão semi-eixo oscilante.	103
Figura 31 – Fluxo de potência da suspensão semi-eixo oscilante.	103
Figura 32 – Representação de uma suspensão braços sobrepostos	104
Figura 33 – (a) Mecanismo de suspensão; (b) mecanismo de	
posicionamento da roda.	104
Figura 34 – Grafo de Ligação do mecanismo (parcial) de suspensão,	
com o laço algébrico destacado pela linha pontilhada.	105
Figura 35 – Grafo de Ligação do mecanismo de posicionamento da	
roda.	105
Figura 36 – Diagrama do Fluxo de Potência da suspensão braços	
sobrepostos.	113
Figura 37 – Grafo Multiligação da suspensão braços sobrepostos.	113

Figura 38 – Grafo Multiligação da suspensão semi-eixo oscilante obtid	0
a partir do grafo da suspensão braços sobrepostos.	114
Figura 39 – Modelos dinâmicos que podem ser construídos.	116
Figura 40 – Modelo físico de veículo plano com 4 graus de liberdade.	118
Figura 41 – Grafo de ligação do modelo de veículo plano com 4 graus	
de liberdade.	118
Figura 42 – Diagrama de fluxo de potência do modelo.	119
Figura 43 – Estrutura de junção do modelo.	119
Figura 44 – Estrutura de junção em grafo multiligação.	120
Figura 45 – Modelo de 7 graus de liberdade, suspensões sem	
geometria.	122
Figura 46 – Estrutura Grafo Multiligação de um veículo terrestre com	
7 graus de liberdade.	123
Figura 47 – Diagrama de fluxo de potência do modelo de veículo de 7	
graus de liberdade.	124
Figura 48 – Estrutura do módulo no acoplamento computacional.	125
Figura 49 – Módulos unidos em seqüência. (a) cadeia simples;	
(b) cadeia simples em laço; (c) seqüencial com laço;	
(d) tipo árvore.	126
Figura 50 – Montagem do modelo fechado a partir do modelo aberto.	126
Figura 51 – Fluxo de potência do modelo.	127
Figura 52 – (a) Chassi, seu referencial e pontos principais. (b) Fluxo	
de potência.	128
Figura 53 – Grafo multiligação do chassi, somente cinemática.	128
Figura 54 – Grafo Multiligação do chassi com os campos e fontes	
ideais.	129
Figura 55 – Campos e fontes ideais de esforços.	130
Figura 56 – (a) Grafo Multiligação do pneu. (b) Fluxo de potência.	133
Figura 57 – Localização do ponto Q na roda. O ponto R é o centro	
geométrico e também o CG.	133
Figura 58 – Diagrama de fluxo de potência da suspensão.	134
Figura 59 – Grafo Multiligação da suspensão semi-eixo oscilante.	135
Figura 60 – Grafo multiligação da suspensão braços sobrepostos.	145

Figura 61 – Entradas e saídas do grafo em destaque.	146
Figura 62 – Diagrama do fluxo de potência da suspensão braços	
sobrepostos.	146
Figura 63 – Mecanismo de direção.	154
Figura 64 – Diagrama de fluxo de potência da caixa de direção.	155
Figura 65 – Grafo de ligação da cremalheira.	156
Figura 66 – Barra de direção e seu referencial próprio; fluxo de	
potência.	158
Figura 67 – Grafo multiligação da barra de direção do lado direito.	159
Figura 68 – Fluxo de potência e estruturas de junção.	161
Figura 69 – Pinos-Mestre e seus referenciais locais. (a) Lado direito e	
(b) lado esquerdo.	162
Figura 70 – Fluxo de potência do pino-mestre.	162
Figura 71 – Grafo Multiligação do pino-mestre.	163
Figura 72 – Grafo multiligação da roda, prevendo acoplamento com o	
pino-mestre.	166
Figura 73 – Grafo multiligação da suspensão semi-eixo oscilante, sem	1
o pino-mestre.	168
Figura 74 – Diagrama do fluxo de potência com o mecanismo de	
direção incluído.	169
Figura 75 – Modelo implementado em diagrama de blocos usando	
MATLAB/SIMULINK.	170
Figura 76 – Primeiro nível do bloco do chassi.	171
Figura 77 – Segundo nível do bloco do chassi.	172
Figura 78 – Terceiro nível do diagrama de blocos do chassi.	173
Figura 79 – Primeiro nível dos blocos dos pneus.	173
Figura 80 – Segundo nível do diagrama de blocos do pneu.	174
Figura 81 – Primeiro nível do diagrama de blocos das suspensões.	174
Figura 82 – Segundo nível do diagrama de blocos da suspensão	
semi-eixo oscilante.	175
Figura 83 – Estrutura de junção do mecanismo.	176
Figura 84 – Interior da estrutura de junção.	176
Figura 85 – Diagrama de blocos da suspensão baços sobrepostos.	177

Figura 86 – Diagrama de blocos da estrutura de junção.	178
Figura 87 – Isolamento das variáveis pertinentes aos elementos e	
campos anexos à estrutura de junção mediante inserção	
de blocos para anular os sinais.	179
Figura 89 – Parâmetros da suspensão semi-eixo oscilante.	183
Figura 90 – Parâmetros da geometria da suspensão braços	
sobrepostos.	184
Figura 91 – Modelo da configuração semi-eixo oscilante em	
visualNastran 4D na posição inicial.	185
Figura 92 – Modelo em visualNastran 4D da suspensão braços	
sobrepostos (lado direito).	186
Figura 93 – Uso de módulos para anular a entrada de sinais.	187
Figura 94 – Inserção de blocos para manipular os sinais de entrada.	187
Figura 95 – Posições dos pontos de ancoragem do chassi	
(J, I, L, K, E e W), do CG do chassi (C), do CG das rodas	
direita e esquerda (RD e RE) e dos pontos Q das rodas	
(QD e QE).	188
Figura 96 – Comprimento da mola direita, em milímetros.	189
Figura 97 – Variação da força dos elementos complacentes.	189
Figura 98 – Componente horizontal da força aplicada no ponto E .	190
Figura 99 – Componente vertical da força aplicada no ponto E .	190
Figura 100 – Componente horizontal da força aplicada no ponto L.	191
Figura 101 – Componente vertical da força aplicada no ponto L.	191
Figura 102 – Componente horizontal do vetor-posição absoluta do	
ponto Q .	192
Figura 103 – Componente vertical do vetor-posição absoluta do	
ponto Q .	192
Figura 104 – Comparação entre as forças produzidas pelas suspensõe	es
quando se considera (direita) ou não (esquerda) o efeito	
do campo de inércias junção causal.	193
Figura 105 – Forças nos pontos de ancoragem inferiores do chassi.	194
Figura 106 – Inclusão da força do pneu no modelo.	194
Figura 107 – Força produzida pelo pneu direito.	195

Figura 108 – Componente horizontal da força no ponto E.	195
Figura 109 – Componente vertical da força no ponto E .	196
Figura 110 – Forças dos elementos complacentes da suspensão.	196
Figura 111 – Posição vertical do CG do chassi.	197
Figura 112 – Força sobre o ponto E , componente horizontal.	197
Figura 113 – Força sobre o ponto E , componente vertical.	198
Figura 114 – Posições dos pontos de ancoragem do chassi(J, I, L,	
K, E e W), do CG do chassi (C), do CG das rodas direita	
e esquerda (RD e RE) e dos pontos Q das rodas	
(QD e QE).	199
Figura 115 – Força da suspensão direita (braços sobrepostos).	200
Figura 116 – Componente horizontal da força sobre o ponto E.	200
Figura 117 – Componente vertical da força sobre o ponto E.	201
Figura 118 – Força sobre o ponto J, componente horizontal.	201
Figura 119 – Força sobre o ponto J , componente vertical.	202
Figura 120 – Força sobre o ponto L, componente horizontal.	202
Figura 121 – Força sobre o ponto L, componente vertical.	203
Figura 122 – Força produzida pelo pneu direito. Comparação entre	
os resultados produzidos pelo visualNastran 4D e pelo	
MATLAB/SIMULINK.	203
Figura 123 – Comprimento da mola direita.	204
Figura 124 – Força aplicada no ponto E .	204
Figura 125 – Força aplicada no ponto L.	205
Figura 126 – Força aplicada no ponto J .	205
Figura 127 – Posição Vertical do CG do chassi.	206
Figura 128 – Sinal de entrada de excitação de base (gráfico à esquerd	la)
e seu correspondente integrado (gráfico à direita).	207
Figura 129 – Deslocamento do CG do chassi (ponto ${f C}$), dos pontos	
de ancoragem (J, L, E – lado direito; I, K, W – lado	
esquerdo), dos CGs das rodas (RD e RE) e dos pontos	
de contato aro-pneu (QD e QE). As posições finais estão	
assinaladas.	207
Figura 130 – Forças dos pneus.	208

Figura 131 – Variação do comprimento das molas direita e esquerda.	209
Figura 132 – Variação das forças das suspensões.	209
Figura 133 – Coordenadas do CG do chassi.	209
Figura 134 – Ângulo de rolagem do chassi.	210

Lista de tabelas

Tabela 1 – Os nove elementos básicos de um grafo de ligação.	47
Tabela 2 – Representações matemáticas dos campos.	53
Tabela 3 – Relações entre as variáveis da estrutura de junção [2].	57
Tabela 4 – Subsistemas em um veículo.	73
Tabela 5 – Principais juntas e seus graus de liberdade.	81
Tabela 6 – Velocidades de entrada e de saída dos corpos dos	
mecanismos.	106
Tabela 7 – Parâmetros do chassi do modelo de ½ veículo plano.	182
Tabela 8 – Parâmetros da suspensão semi-eixo oscilante e seu pneu.	183
Tabela 9 – parâmetros da suspensão braços sobrepostos e seu pneu.	184